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Abstract  

In this paper, by introducing two statistical parameters, energy and L-kurtosis, a new fault diagnostic system 

combining Wavelet Packet Decomposition and Multilayer Perceptron Neural Network is designed to improve 

efficiency and precision of  induction motor defects diagnosis. This method is applied  to vibratory signals of 

asynchronous motor running  at two different rotational speeds (1500 rpm and 2000 rpm)  at a sampling 

frequency of 8 KHz to detect three main types of defects: bearing faults, load imbalance and misalignment. 

These speeds are considered as the usual medium running speeds of induction motor. According to the results, 

the high performance and accuracy of this new faults diagnostic system is proved and confirmed, thus  it can 

be used in the detection of other machines defects. 
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1. INTRODUCTION 

 

Despite the development which affects all fields, 

induction motors remain essential machines in the 

industrial world, and researchers are constantly 

investigating these machines and developing 

diagnostic methods in order to ensure their 

availability. Several studies have shown that the 

Induction motor (IM) mechanical defects represent a 

great rate of the hole defects that can occur on these 

motors, where the bearing defects, only, stand for 

more than 40% of the total rate [1]. However, most 

of the researches were focused on diagnosing 

bearing faults on the breakage side of the outer ring, 

inner ring, cage and balls; let us cite for example the 

work of [2] whose the exploited method is a 

combination of kurtogram, wavelet packet transform 

and iterative 1.5-dimensional spectrum; and in [3] 

the researcher has exploited wavelet energy entropy 

and least square support vector machine as method 

for fault diagnosis; while in [4], the researchers 

proposed dilated  convolution neural network based 

model to detect both bearing faults and broken rotor 

bar;  and in [5], the authors have combined wavelet 

packet transform with convolution neural network 

optimized by simulated annealing algorithm; when 

in [6] the proposed method was based on an 

improved convolution neural network called 

multiple fault convolution neural network classifier 
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(MFCNN). Although in reality, bearing defects are 

not limited to these types of defects, in others terms 

these defects are the result of other factors such as: 

lack of lubrication, improper lubricant, imbalances, 

misalignment, etc. 

According to the literature, many works have 

widely investigated these types of defects such as 

reported in [7] where the author studied the improper 

lubrication defect using the Wavelet Packet 

Decomposition (WPD) method. Whereas,  the 

authors of  [8–10] focused their work on  the 

misalignment defect using wavelet transform and 

multiscale entropy, multi-input convolution neural 

network, and Fast Fourier Transform (FFT) with 

Support Vector Machine (SVM) respectively. The 

load unbalance defect was treated in [11] based on 

wavelet packet decomposition and power spectral 

density. While there isn't a single comprehensive 

work that addresses all of these defects 

simultaneously. 
Furthermore, in recent years, researches dealing 

with defects diagnosis in rotating machines, in 

general, go towards the combination of artificial 

intelligent (AI) techniques and time-frequency 

methods as presented by the authors of [12 -13]. It is 

for this reason that this work aims to study five types 

of defects (load unbalance, parallel misalignment, 

improper lubrication, lack of lubrication, combined 

defects of broken cage + lack of lubrication) not 
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widely investigated previously using a novel 

methodology based on the WPD energy, Multilayer 

Perceptron Neural Network (MLP-NN) and 

statistical parameter L-kurtosis.  WPD represents the 

best time-frequency method due to its better 

resolution over other time-frequency approaches and 

its ability to decompose both high and low 

frequencies of the considered signal, whereas MLP-

NN is the easiest and most popular AI technique for 

its application; and the statistical parameter L-

kurtosis is introduced as simple indicator switch the 

variation of its values used to indicate the defects  as 

presented in [14–16], but not considered previously 

as a feature of classification despite its precision and 

its robustness to outliers.  

The main contributions of this work are: The 

classification of various and combined defects of IM 

that have not been largely investigated (load 

unbalance, parallel misalignment, improper 

lubrication, lack of lubrication, combined defects of 

(broken cage + lack of lubrication). Adding to this, 

the integration of a novel feature (L-kurtosis) 

extracted from WPD to train MLP-NN classifier in 

order to diagnose several IM defects. Finally, a data 

gathering system was used to evaluate the suggested 

methodology at two different motor rotational 

speeds. 

The main challenge of this methodology is its 

capability to detect other combined defects using 

shorter signals. 

For comparison, Table 1 summarizes the 

contribution of the proposed methodology of some  

works cited above. 

In this paper the theoretical background of  

induction motor defects, WPD energy, L-kurtosis 

and MLP-NN are presented. The proposed 

methodology, data acquisitions (vibratory signals) 

system and the results are discussed and analyzed.  

 

2.THEORETICAL BACKGROUND  

 

2.1. Induction motor defects impact on vibration 

signal 

Vibration techniques are usually used for 

mechanical fault detection, depending on the data 

given by vibratory signals, using sensors. Hence, 

there are three types of sensors[17]: acceleration 

sensors; speed sensors are confined in their 

capability to accurately measure speed within a 

specific frequency range due to their limited low-

frequency response: and displacement sensors which 

are electrical eddy current sensors with non-contact 

measurement.  

The various vibration data gathered are used to 

identify and validate different defects[18]. 

In the present paper three types of defects are 

treated: mechanical load unbalance, parallel 

misalignment and lubrication and cage bearing 

defect. 

 

Mechanical load unbalance 

The mechanical load unbalance defect is defined 

as a non-uniform distribution of the mass around an 

axis of rotation by placing additional weights on a 

balanced metal disk as presented in Fig.1. This mass 

causes a centrifugal force that causes torque  

 
Fig. 1. Load unbalance 

 

 
Table 1. Comparison of different fault detecting techniques 

Reference Fault types Exploited methods Results  / Accuracy 

[7] Improper lubrication WPD It was concluded that, for medium speeds 
DWT decomposition procedure is efficient to 

distinguish between improper lubricated 
bearing and healthy bearing. 

[8] Misalignment defect WT, multiscale entropy, SVM The highest accuracy is 91.1% 

[9] Misalignment defect 

Crack in rotor System 

multi-input CNN Classification accuracy is 99.42% 

[10] Misalignment defect FFT, SVM Classification accuracy is 98.8% 

[11] Load unbalance WPD energy, power spectral density The ability of the proposed method to 

separate between healthy state and load 
unbalance defect with different severity 

levels 

The present 
work 

Load unbalance 
Parallel misalignment 

Improper lubrication 
Lack of lubrication 

Combined defects of broken 
cage + lack of lubrication 

WPD energy, L-kurtosis and MLP-NN High accuracy of 100% is obtained when 
dealing with different defect types 

 

 

Ω 

Additional weight  
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oscillations at specific frequencies that are 

frequently correlated with the mechanical speed of 

the motor. [11]. According to [19], within the 

vibration analysis, the amplitude of the motor speed 

decreases with load increase. 

 

Misalignment  

When the driven machine shaft and the drive 

machine shaft are not on the same centerline, this is 

referred to as misalignment. According to Fig. 2, 

there are three different forms of misalignment: 

parallel, angular, and general [20]. 

 
Fig. 2. Misalignment: a) parallel, b) angular, 

c) general 

 

Bearing defect  

The statistical study of IM's defects indicate that 

bearings failures represent more than forty percent of 

the IM defects. These defects can occur on several 

components of the rolling element bearing (inner 

(IR) and outer races (OR), rolling elements (B) and 

cages (C)) [18], [21], [22] as shown in Fig.3 due to 

several factors such as lubrication failure, bearing 

overheating, corrosion and contamination, excessive 

load, and  incorrect assembly and misalignment. 

Bearing issues appears in additional frequencies 

(f) that express each type of defect as follows:   

(1) 

{
  
 

  
 𝑓𝑂𝑅 (𝐻𝑧) =

𝑍

2
𝑓𝑟(1 −

𝐵𝐷

𝐶𝐷
𝑐𝑜𝑠𝛽)

𝑓𝐼𝑅 (𝐻𝑧) =
𝑍

2
𝑓𝑟(1 +

𝐵𝐷

𝐶𝐷
𝑐𝑜𝑠𝛽)

𝑓𝐵 (𝐻𝑧) = 𝑓𝑟
𝐶𝐷

2𝐵𝐷
[1 − (

𝐵𝐷

𝐶𝐷
𝑐𝑜𝑠𝛽)

2

]

𝑓𝑐(𝐻𝑧) =
𝑓𝑟

2
(1 −

𝐵𝐷

𝐶𝐷
𝑐𝑜𝑠𝛽)

         

                                         

Where: Z: rollers' number, BD: ball diameter, CD: 

pitch circle diameter,  β: angle of contact (rad), and 

fr:  rotating frequency. 

 

 
Fig. 3. Bearing components 

 

2.2. Wavelet packet decomposition energy  

A signal processing technique with resolution 

that adapts to the size of the object or the examined 

information is the wavelet transform (WT) [23]. This 

method divides the signal into smaller components 

known as wavelets, which have the property of being 

well localizable in time or frequency because of their 

fundamental building blocks, generated by 

translation b and dilatation a from a function, mother 

wavelet[24]. 

(2) Ψa,b(t) =
1

√a
Ψ(

t−b

a
)                                                            

Contrary to discreet and continuous wavelet 

transform, the Coifman and Wickerhauser WPD 

generates at each level an approximation coefficient 

containing low frequency information and a detail 

coefficient containing high frequency information of 

the original signal without data loss or redundancy. 

The procedure can be carried out multiple times to 

create the tree structure depicted in Fig. 4. [11], [25]. 

 

Fig. 4. WPD tree with depth of 3 

 

The WPD coefficients Xk
j+1

are defined by[26]: 

(3) {
X2p
j+1[n] = ∑ HP[m − 2n]Xp

j [m]m

X2p+1
j+1 [n] = ∑ LP[m − 2n]Xp

j [m]m

 

b 

a 

c 
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(4) : Numbered nodes of  1-jWith: p=0,1,2...,2
level j. 

The energy eigenvalue of each frequency band at 

a decomposition level j, is given by [27]: 

(5) 𝐸𝑗 = ∑ |𝑋𝑗(𝑛)|
2𝑁

𝑛=1                         

where: Xj(n) are the wavelet packet coefficients. 

 

2.3.L-kurtosis 

L-kurtosis is the extended form of the traditional 

kurtosis, it is more accurate in estimating parameters 

and more reliable against outliers[28]. 

L-kurtosis represents the fourth order L-moment; 

it is defined as [29]: 

(6) 𝐿_𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
𝐿4

𝐿2
                               

Where: 

(7) 𝐿𝑟 =
1

𝑟
∑ (−1)𝑘(𝑟−1

𝑘
)𝐸(𝑥𝑟−𝑘:𝑟)

𝑟−1
𝑘=0             

With: (x1:N) independent sample ranked in 

ascending order from 1 to n with the cumulative 

distribution function P(x) and quantile function x(P); 

r: L-moment order, and E(xr−k:r): the expectation of 

the r-k order statistic of a sample of size r: 

(8) 𝐸(𝑥𝑗:𝑟) =
𝑟!

(𝑗−1)!(𝑟−𝑗)!
∫ 𝑥(𝑃)[𝑃(𝑥)]𝑗−1
1

0
[1 −

𝑃(𝑥)]𝑟−𝑗 𝑑𝑃(𝑥)                       

In case of discreet data (x1:N) , ranked in 

ascending order from 1 to n, L4 and L2 will be 

defined as [30]: 

(9)  {
𝐿4 = 20𝛽3 − 30𝛽2 + 12𝛽1 − 𝛽0

𝐿2 = 2𝛽1 − 𝛽0
        

Where: 

(10) 

{
  
 

  
 

𝛽0 = 𝑁−1∑ 𝑥𝑖
𝑁
𝑖=1

𝛽1 = 𝑁
−1∑ 𝑥𝑖 [

(𝑖−1)

(𝑁−1)
]𝑁

𝑖=2

𝛽2 = 𝑁
−1∑ 𝑥𝑖 [

(𝑖−1)(𝑖−2)

(𝑁−1)(𝑁−2)
]𝑁

𝑖=3

𝛽2 = 𝑁
−1∑ 𝑥𝑖 [

(𝑖−1)(𝑖−2)(𝑖−3)

(𝑁−1)(𝑁−2)(𝑁−3)
]𝑁

𝑖=4

              

 
2.4. Multi-Layer Perceptron neural network 

The most often used MLP-NN is made up of an 

input layer, whose nodes' numbers are proportional 

to the number of input data, one or more hidden 

layers, and an output layer. The resultant data from 

each layer represents entries for the following layer 

switch a set of appropriate rules and algorithms [31-

32], as illustrated  in Fig. 5.  

 
Fig. 5. MLP-NN architecture 

 

Where: xi and yj: are the input data of each layer, ωi 

and ωj the weights, bi and bj: the bias, z: the output 

and  

The most popular activation functions used for 

the MLP-NN classifier are: 

Tangent Sigmoïde function (TanSig): 

(11) 𝑇𝑎𝑛𝑆𝑖𝑔(𝑥) =
2

1+𝑒−2𝑥
− 1        

Linear transfer function (Purelin): 
(12) 𝑃𝑢𝑟𝑒𝑙𝑖𝑛(𝑥) = 𝑥                         

Log-sigmoid transfer function (LogSig): 

(13) 𝐿𝑜𝑔𝑆𝑖𝑔(𝑥) =
1

1+𝑒−𝑥
                       

 

3. PROPOSED METHODOLOGY  

 

The proposed methodology can be resumed by 

the flowchart of Fig.6. It consists of:  (1) 

decomposition of signals into three levels by WPD 

using Daubechies mother wavelet (db6). (2) 

Energies calculation and L-kurtosis of each terminal 

sub-band of WPD third level. (3) Classification of 

IM defects using MLP-NN, by giving energies and 

L-kurtosis values as inputs.

 
Fig. 6. Proposed methodology 

 
 

                          Data acquisition  

                              of a three phase  

                              induction motor 

                              signals 

Calculate energies and L-kurtosis of 

each terminal sub-band 

Signals decomposition into three levels 

by WPD using Daubechies mother 

wavelet (db6) 

Classification of IM defects using MLP-

NN 

Classification into 6 classes: healthy state (HS); parallel misalignment 

(PM); load unbalance (LU); lack of lubrication (LL); lack of 

lubrication+ broken cage (LLBC); Improper lubrication (IL) 
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4. EXPERIMENTAL SETUP FOR 

VIBRATORY SIGNALS ACQUISITION 

 

The designed rig for vibratory signals acquisition 

shown in Fig.7 is composed from a typical cage 

induction machine (0.37 kW; 1 pole-pair; 380 V; 

1.1A) with encoder, a PC, USB measuring device, 

accelerometer, elastic claw coupling, vibration 

analyzer, bearing unit, balanced flywheel (load) and 

Control unit which contains a frequency converter 

intended to regulate gradually the speed of rotation. 

The control unit also contains the rotation speed 

indicator and an another indicator for the power 

absorbed by the motor. The vibration signal used in 

this application, was measured at sampling 

frequency of 8 KHz, for two rotation speed 1500 rpm 

and 2000 rpm, under different operating conditions 

as represented in Table 4 and Fig. 8, where the 

defects were carried out as follow: the first bearing 

(A) was cleaned from its lubricant and its cage was 

broken manually, the second bearing (b) was just 

cleaned from lubricant, for the third one (c) fine 

grains of soil was added to the lubricant, to get a load 

unbalance (d) a weight of 2g has been added to the 

disc wheel and the parallel misalignment was 

executed using Adjuster for horizontal alignment of 

training shown in Fig. 8.e. The parameters of the 

bearing geometry are indicated in Table 2.  

According to the parameters given in table 2 and 

the formulas (1) the characteristics bearing fault 

frequencies values are established in Table 3. 

 

5. RESULTS AND DISCUSSIONS  

 

In order to validate the proposed method, a set of 

vibration signals obtained from the rig shown in 

Fig.7 at different operating conditions (healthy state 

(HS); parallel misalignment (PM); load unbalance 

(LU); lack of lubrication (LL); lack of lubrication+ 

broken cage (LLBC); Improper lubrication (IL)) are 

exploited. For each case, 12 signals are measured, 

where each signal is composed from 820 samples. 

The 144 signals, in total, are decomposed by the 

WPD using the mother wavelet Daubchies 6 at depth 

of 3. 

 

 

 
 

 

  

 
Fig. 7. Experimental setup 

 

 
Fig. 8 IM defects: a) combined defects (lack of lubrication + broken cage), b) lack of lubrication, c) improper 

lubrication, d) load unbalance, e) parallel misalignment 
 

 

 

a b e c d 

PC 

Induction motor Accelerometer 

Bearing unit 

Control unit 
Vibration analyser 

Coupling 

USB measuring device  

Load 
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Table 2. Bearin4g parameters: Ball bearing 6004-2RSH SKF 

Inside diameter Outside diameter Thickness Ball diameter Pitch diameter 

20 42 12 6 31 

 

Table 3. Characteristics bearing fault frequencies 

Rotation speed  1500 rpm 2000 rpm 

Outer race fault frequency 90.73 120.96 

Inner race fault frequency 134.27 179.01 

Ball bearing fault frequency 62.16 82.88 

Cage fault frequency 10.08 13.44 

 
Table 4. Operating conditions of the collected data 

 1500 rpm 2000 rpm 

Healthy state  ✓  ✓  

Parallel misalignment 0.5 mm ✓  ✓  

Load unbalance  2 g ✓  ✓  

Bearing defect Luck of lubrication ✓  ✓  

Luck of lubrication + broken cage ✓  ✓  

Improper lubrication ✓  ✓  

 

Figures 9 and 10 present the original signal and 

the eight nodes resultant from the WPD at depth of 

three, of the two first cases: healthy state and parallel 

misalignment, at a rotational speed of 2000 rpm. 

Through a visual comparison of the two figures 

9 and 10, we remark that the amplitude of the 

original signal in the defective state as well as the 

signals resulting from the wavelet packet 

decomposition, are much more important than the 

vibratory signal amplitudes taken from the machine 

in a healthy state. 

The different signals of the nodes are used to 

extract the values of energies and L-kurtosis in order 

to train the artificial neural network. Table 5 

represents some values of the two indicators: energy 

and L-kurtosis, taken from the same sub-band for 

each operating condition, we have taken the example 

of the node (3, 0) where the values are most 

significant. It can be noticed that the increase in the 

severity of the defect treated, increases the value of 

the energy, the same for L-kurtosis, although the 

value of the energy increases intensively, the value 

of L-kurtosis varies slowly which prove its 

robustness to outliers. 

These values variations helped the neural 

network presented in this paper to make the right 

classification decision. 

 

 
Fig. 9. Original signal and terminal sub-bands in a healthy state 
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Fig. 10. Original signal and terminal sub-bands in case of parallel misalignment 

 
Table 5. Samples of energy and L-kurtosis values 

 HS  PM LU LL LLBC IL 

Energy 5.526  22.542 498.996 59.328 269.487 619.726 

L-kurtosis 0.091  0.100 0.137 0.108 0.134 0.144 

 

The classifications of the IM defects are 

performed by Multi-Layer Perceptron neural 

network (MLP-NN) (Fig.11).  Thus; 96 examples 

(signals) are used as training inputs and 48 examples 

as testing inputs, the rest of parameters used for 

neural networks are grouped in Table 6. 

 

Table 6. MLP-NN design parameters 

Learning type                                     Supervised  

Activation function 

Hidden layer                                         Tansigmoid 

Output layer                                          Purlin 

Performance                                          MSE 

Weights initialization                          Random 

Stopped  criteria 

Minimum gradient                                      10-7 

Max.Epochs                                            1000 

Mu                                                          0.001 

 

In order to facilitate the classification, the studied 

IM defects are coded as represented in Table 7. 

The performance rate is defined by the ratio: 

𝑡𝑟% =
𝑁𝑐

𝑁𝑡
100     

 

 
Fig. 11 MLP-NN architecture 

 

Table 7. IM defects  codification 

IM conditions class Code classes 

HS 1 100000 

PM 2 010000 

LU 3 001000 

LL 4 000100 

LLBC 5 000010 

IL 6 000001 

 

With: Nc: Number of correct classification and 

Nt: Number of total tests. 
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The experimental train and test outputs are 

shown in Fig.12, which illustrates how well the 

MLP-NN performs when classifying data according 

to the different sorts of faults(6 classes) is equal to 

100 % with a total regression of 0.99893 (Fig.13) 

due to small errors that can be observed by the slight 

variation in values around the target outputs 

(Fig.14). The current findings attest to the efficiency 

of the suggested approach for classifying IM faults 

under various load circumstances. 

 

 
Fig. 12. Experimental train and test outputs 

 

Fig. 13. Regression analysis 
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Fig. 14. Error between target and training and test output 

 

6. CONCLUSION 

 

This paper studied the efficiency of the proposed 

methodology, which is based on the combination of 

two methods of different types, the WPD and the 

multilayer perceptron neural networks, by 

introducing two statistical parameters: energy and L-

kurtosis, calculated from each terminal sub-band of 

the WPD, as classifier inputs. This methodology was 

conducted on an induction motor running at two 

different speeds in order to detect three categories of 

defects: bearing defect, load unbalance and 

misalignment. The obtained results show the 

reliability of the proposed methodology, therefore, 

its application and use can be extended for the 

detection of other defects. The main challenge of this 

methodology is its capability to detect other 

combined defects using shorter signals (with the 

least number of samples). 
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